Math, asked by abhishektirkey1, 1 month ago

prove that cos² ( 1 + tan² ) = 1​

Answers

Answered by nafeess2019
1

Heya mate! Here's your Answer!

cos²(1 + tan²)

cos²(1 + \frac{sin^{2} }{cos^2})                                                    (tan² = \frac{sin^{2} }{cos^2})

cos² + cos² x \frac{sin^{2} }{cos^2}                                            (canceling cos²)

cos² + sin²                                                       (cos² + sin² = 1)

=1

Hence, proved that cos²(1 + tan²) = 1

Leave thanks if this helped you! and follow~~~

Answered by YoshithBrainly
0

Answer:

TO PROVE,

Step-by-step explanation: Let , cos²(1+tan²) be equation 1

w.k.t , 1+tan²θ=sec²θ

substitute value of 1+tan²θ in equation 1

cos²θ(sec²θ)=

according to identity ,  cos²θ*sec²θ=1

cos²θ(sec²θ)=1.

HENCE PROVED

Similar questions