PROVE THAT, cos² (45°+ø) + cos² (45°-ø)
tan (60° + ø) tan(30°- ø)=1
Who will answer I will mark his answer as brainliest answerrrrr.......
Answers
Answered by
7
Answer:
1
Step-by-step explanation:
I hope this will help you
Attachments:
Answered by
27
Given
[cos²(45°+ø) + cos²(45°-ø)]/[tan (60° + ø) tan(30°- ø)] = 1
To Prove
Prove that, [cos²(45°+ø) + cos²(45°-ø)]/[tan (60° + ø) tan(30°- ø)] = 1
L.H.S. = R.H.S.
Proof
Taking L.H.S.
⇒ [cos²(45°+ø) + cos²(45°-ø)]/[tan (60° + ø) tan(30°- ø)]
Used formulas: cosø = sin(90°-ø) and tanø = cot(90°-ø)
⇒ [sin²(90 -45°+ ø) + cos²(45°+ø)]/[tan(60°+ø). tan(30° + ø)]
⇒ [sin²(45°+ø) + cos²(45°+ø)]/[cot(90°-60°+ø). tan(30°+ø)]
We know that, sin²ø + cos²ø = 1
⇒ 1/[cot(30°+ø) tan(30°+ø)]
Also, 1/cotø = tanø
⇒
⇒ 1/1
⇒ 1
L.H.S. = R.H.S
Hence, proved
Similar questions