Math, asked by mujawarsaad, 3 days ago

Prove that , (cos2

A-1) (1+ cot

2

A) = -1​

Answers

Answered by varadad25
4

Question:

Prove that:

\displaystyle{\sf\:(\:\cos^2\:A\:-\:1\:)\:(\:1\:+\:\cot^2\:A\:)\:=\:-\:1}

Answer:

\displaystyle{\boxed{\red{\sf\:(\:\cos^2\:A\:-\:1\:)\:(\:1\:+\:\cot^2\:A\:)\:=\:-\:1\:}}}

Step-by-step-explanation:

We have given a trigonometric equation.

We have to prove that equation.

The given trigonometric equation is

\displaystyle{\sf\:(\:\cos^2\:A\:-\:1\:)\:(\:1\:+\:\cot^2\:A\:)\:=\:-\:1}

We know that,

\displaystyle{\boxed{\blue{\sf\:1\:+\:\cot^2\:A\:=\:cosec^2\:A\:}}}

\displaystyle{\implies\sf\:LHS\:=\:(\:\cos^2\:A\:-\:1\:)\:cosec^2\:A}

We know that,

\displaystyle{\boxed{\pink{\sf\:\sin^2\:A\:+\:\cos^2\:A\:=\:1\:}}}

\displaystyle{\therefore\:\sf\:\cos^2\:A\:=\:1\:-\:\sin^2\:A}

\displaystyle{\implies\sf\:LHS\:=\:(\:\cancel{1}\:-\:\sin^2\:A\:-\:\cancel{1}\:)\:cosec^2\:A}

\displaystyle{\implies\sf\:LHS\:=\:(\:-\:\sin^2\:A\:)\:cosec^2\:A}

We know that,

\displaystyle{\boxed{\green{\sf\:cosec\:A\:=\:\dfrac{1}{\sin\:A}\:}}}

\displaystyle{\implies\sf\:LHS\:=\:(\:-\:\sin^2\:A\:)\:\left(\:\dfrac{1}{\sin\:A}\:\right)^2}

\displaystyle{\implies\sf\:LHS\:=\:-\:\cancel{\sin^2\:A}\:\times\:\dfrac{1}{\cancel{\sin^2\:A}}}

\displaystyle{\implies\sf\:LHS\:=\:-\:1}

\displaystyle{\sf\:RHS\:=\:-\:1}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:LHS\:=\:RHS\:}}}}

Hence proved!

Similar questions