Math, asked by nandini0216, 2 months ago

. Prove that cos2 A-sin2A = 2cos2A -1.​

Answers

Answered by AestheticSky
16

Property to be used:-

\underline{\boxed{\sf Sin²Ø = 1-Cos²Ø}}

Solution

L.H.S :-

\dashrightarrow \sf Cos²A-Sin²A

\dashrightarrow \sf Cos²A-(1-Cos²A)

\dashrightarrow \sf Cos²A-1+Cos²A

\dashrightarrow \sf 2Cos²A-1 = R.H.S

hence, proved

__________________________

Additional information:-

  • \sf Sec²Ø-Tan²Ø = 1
  • \sf Cosec²Ø-Cot²Ø = 1

Answered by xxbrainliacxx
1

 \sf{We \:  have \:  to  \: prove,}

• \:  { \cos }^{2}A  -  { \sin }^{2} A = 2 { \cos }^{2} A - 1

 \\

 \sf{We \:  know \:  that, }

 { \sin}^{2}  \theta +  { \cos}^{2}  \theta = 1

 \rightarrow  { \sin}^{2}  \theta =1 -   { \cos}^{2} \theta

 \\

 \bf{Left \:  Side ={ \cos }^{2}A  -  { \sin }^{2} A }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \: \bf = { \cos }^{2}A  -  (1 - { \cos }^{2}A)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \: \bf = { \cos }^{2}A  -  1  +  { \cos }^{2}A

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \: \bf = 2{ \cos }^{2}A  -  1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \: \bf = Right \:  Side

 \red{ \boxed {  \therefore \text{Left  Side = Right  Side}}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\text{Hence Proved}}

Similar questions