Math, asked by meghnagurung2386, 1 year ago

Prove that cos² (α - β) + cos² β + 2 cos (α - β) cos α cos β is independent of β.

Answers

Answered by abhi178
12
we have to prove : cos² (α - β) + cos² β - 2 cos (α - β) cos α cos β is independent of β.

cos² (α - β) = (cos\alpha.cos\beta+sin\alpha.sin\beta)^2

=cos^2\alpha.cos^2\beta+sin^2\alpha.sin^2\beta+2cos\alpha cos\beta sin\alpha sin\beta

now, cos² (α - β) + cos² β - 2 cos (α - β) cos α cos β

=cos^2\alpha.cos^2\beta+sin^2\alpha.sin^2\beta+2cos\alpha cos\beta sin\alpha sin\beta+cos^2\beta-2(cos\alpha.cos\beta+sin\alpha.sin\beta)cos\alpha.cos\beta

=cos^2\alpha.cos^2\beta+sin^2\alpha.sin^2\beta+2cos\alpha cos\beta sin\alpha sin\beta+cos^2\beta-2cos\alpha.cos\beta.sin\alpha.sin\beta -2cos^2\alpha.cos^2\beta

=cos^2\beta+sin^2\alpha.sin^2\beta-cos^2\alpha.cos^2\beta

= cos^2\beta(1-cos^2\alpha)+sin^2\alpha.sin^2\beta

= cos^2\beta sin^2\alpha+sin^2\alpha.sin^2\beta

= sin^2\alpha(sin^2\beta+cos^2\beta)

= sin^2\alpha

here it is clear that solution of cos² (α - β) + cos² β - 2 cos (α - β) cos α cos β independent of \beta
Answered by rohitkumargupta
5
HELLO DEAR,




GIVEN:-
cos² (α - β) = \bold{(cos\alpha.cos\beta+sin\alpha.sin\beta)^2}

=> \bold{cos^2\alpha.cos^2\beta+sin^2\alpha.sin^2\beta+2cos\alpha cos\beta sin\alpha sin\beta}


now,
cos² (α - β) + cos² β - 2 cos (α - β) cos α cos β

=> \bold{cos^2\alpha.cos^2\beta+sin^2\alpha.sin^2\beta+2cos\alpha cos\beta sin\alpha sin\beta+cos^2\beta-2(cos\alpha.cos\beta+sin\alpha.sin\beta)cos\alpha.cos\beta}

=> \bold{cos^2\alpha.cos^2\beta+sin^2\alpha.sin^2\beta+2cos\alpha cos\beta sin\alpha sin\beta+cos^2\beta-2cos\alpha.cos\beta.sin\alpha.sin\beta -2cos^2\alpha.cos^2\beta}

=> \bold{cos^2\beta+sin^2\alpha.sin^2\beta-cos^2\alpha.cos^2\beta}

=> \bold{cos^2\beta(1-cos^2\alpha)+sin^2\alpha.sin^2\beta}

=> \bold{cos^2\beta sin^2\alpha+sin^2\alpha.sin^2\beta}

=> \bold{sin^2\alpha(sin^2\beta+cos^2\beta)}

=> \bold{sin^2\alpha}


hence, it is clear that solution of cos² (α - β) + cos² β - 2 cos (α - β) cos α cos β independent of \beta



I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions
Math, 7 months ago