prove that cos20 cos 30 cos 40 cos 80 =√3/16
Answers
Answered by
0
Answer:
cos20.co30.cos40.cos80=root3/16
LHS=1/2 {2cos20.cos40} cos30.cos80
=1/2 {cos60+cos20} cos30.cos80
=1/4cos30.cos80+1/2cos30.co20.cos80
=root3/8.cos80 +root3/8 {2cos20.cos80}
=root3/8.cos80+ root3/8 (cos100+cos60)
=root3/8cos80 +root3/8ccos (180-80)+root3/8cos60
=root3/16
Answered by
0
Step-by-step explanation:
you can use c-d formulas to get your answer
Similar questions