prove that cos20 cos 40 cos 60 cos 80=1/16.
Answers
since cos 60 = 1/2
LHS=1/2 cos20cos40cos80
multiplying and dividing by 2,
=>1/4 cos80(2cos40cos20)
=1/4 cos80(cos(40+20) + cos(40-20))
= 1/4 cos80(cos60+cos20)
=1/4 cos80(1/2 + cos20)
opening the bracket:
=> 1/8 cos80 + 1/4 cos80cos20
multiplying and dividing [1/4 cos80cos20] by 2,
=> 1/8 cos80 + 1/8 (2cos80cos20)
=1/8 cos80 + 1/8 (cos100 + cos60)
=1/8 cos80 + 1/8 (cos100 + 1/2)
=1/8 cos80 + 1/8 cos100 + 1/16
since cos100 = cos (180-80) = -cos80,
=> 1/8 cos80 + 1/8 (-cos80) +1/16
= 1/8 cos80 - 1/8 cos80 + 1/16
= 1/16 = RHS
ANSWER
Given=>
cos20 cos 40 cos 60 cos 80=
Now.
In LHS
cos20 cos 40 cos 60 cos 80
=>(cos20°× cos40°)cos60°×cos80°
=>[cos(20° + 40°)
+ cos(20° – 40°)]× ×cos80°
=>[cos60° +cos (-20°)] cos80°
=> [cos60°cos80° + cos20°×cos80°]
=>{1/4}×[{1/2}×cos80°+
1/2×{cos(20°+80°)+cos(20°-80°)]
=>[cos80° + {cos100° + cos(-60°)}]
=>[cos80° + cos100° + cos60°]
=>[cos80° +cos(180° – 80°) +cos60°]
=>[cos80° – cos80° + cos60°]
=> ×cos60°
=> ×
=>.
Hence,
LHS =RHS.
HENCE PROVED