Prove that:
cos20 + cos100 + cos140=0
Class 11
Trigonometry
Thank you
Answers
Answered by
3
Answer:
Explanation:
We use the formula cos(A) + cos(120-A) + cos(120+A) = 0
Proof=
L.H.S= cosA + cos(120-A) + cos(120+A)
we know that formula
( cos C+ cosD = 2cos (C+D)/2.cos (C-D) /2)
=> cosA+2cos120 cos-A
=> cosA+2cos (180-60) cosA
=> cosA+2(-cos60) cosA
cosa - 2 \times \frac{1}{2}cosa
=> cosA-cosA
=> 0
In this question, cos20 + cos100 + cos140
=>cos20 + cos(120-20) + cos(120+20)
=>0
Answered by
8
Answer:-
Explanation:-
Take LHS,
(Cos20 + Cos100) + Cos140 = 0
________________________
using identity:-
Cos(x+ y) = Cos(x)Cos(y) - Sin(x)Sin(y)
Cos(x - y) = Cos(x)Cos(y) + Sin(x)Sin(y)
________________________
We know that :-
140 = 120 + 20
and
100 = 120 - 20
_____________________________________
=> Cos140 + Cos 100 + Cos20
=> Cos(120) Cos(20) - Sin(120) Sin(20) + Cos(120) Cos(20) = Sin(120) Sin (20) + Cos(20)
=> Cos(20) [2Cos(120) + 1]
= Cos(20) [(2) (-1/2) +1]
=> Cos(20) [0]
=> 0
HENCE PROVED
___________________________________________[Answer]
Similar questions