Math, asked by mayankmathur2759, 2 days ago

prove that:

cos20°+cos100°+cos120°=0

help me with this question and needed proper solution if any one misbehave here i will report the user and if you give me proper answer you will get 100 points​

Answers

Answered by atharvarangdale
0

Step-by-step explanation:

Use formula cos(a+b) = cosAsinB - sinAcosB (pls confirm)

Answered by llFairyTalell
10

\huge\fbox{Answer ☘}

Question -

cos 20° + cos 100° + cos 140° = 0

Solution~

consider ( cos 20° and cos 100° )

these are in the form of cos C + cos D

cosC + cosD =

 2 \cos( \frac{c + d}{2} )  \cos( \frac{c - d}{2} )  \\

cos 20° + cos 100° =

2 \cos( \frac{20 + 100}{2} )  \cos( \frac{20 - 100}{2} )  \\  \\ 2 \cos( \frac{120}{2} )  \cos( \frac{ - 80}{2} )

Now ,

cos ( - A ) = cos A

so cos(-40°) = cos40°

cos20° + cos100° = 2 cos60°cos40°

 \cos(20)  +  \cos(100)  = 2 \frac{1}{2}  \cos(40)  \\  \\  \cos(20)  +   \cos(100)  =  \cos(40)

so ,

cos20° + cos100° = cos40°

 \cos(40)  +  \cos(140)

Again it is in the form of cosC + cosD

by applying this formula , we get

 \cos(40)  +  \cos(140)  =  \\ 2 \cos( \frac{40 + 140}{2} )  \cos( \frac{40 - 140}{2} )  \\  \\  \cos(40)  +  \cos(140)  = 2 \cos(90)  \times  \cos(50)

 \cos(40)  +  \cos(140)  = 2(0) \times  \cos(40)  \\  \\  \cos(40)  +  \cos(140)  = 0 \\  \\  \cos(20)  +  \cos(100)  +  \cos(140)  = 0

hence , proved!

hope helpful~

Similar questions