Math, asked by Vanshars, 10 months ago

Prove that cos20°cos40°cos60°cos80°= 1/16
Pls tell a shortcut i will mark as brainliest

Answers

Answered by EthicalElite
9

L.H.S.=> cos20°cos40°cos60°cos80°

As, cos60°=1/2

Therefore, (1/2)(2cos20°cos40°)(1/2)cos80°

=>(1/4)[cos(20°+40°)+cos(20°-40°)]cos80°

=>(1/4)(cos60°+cos20°)cos80°

=>(1/4)(cos60°cos80°+cos20°cos80°)

=>(1/4)(1/2)cos80°+(1/4)cos20°cos80°

=>(1/8)cos80°+(1/4)(1/2)(2cos20°cos80°)

=>(1/8)cos80°+(1/8)[cos(20°+80°)+cos(20°-80°)]

=>(1/8)cos80°+(1/8)(cos100°+cos60°)

=>(1/8)cos80°+(1/8)cos100°+(1/8)cos60°

=>(1/8)(cos80°+cos100°)+(1/8)×(1/2)

=>(1/8)[{2cos(80°+100°)/2}{cos(80°-100°)/2}]+(1/16)

=>(1/8)(2cos90°cos10°)+(1/16)

As, cos90°=0

Therefore, 0+(1/16)

=>1/16

R.H.S.=> 1/16

As, L.H.S.= R.H.S.

Hence, proved

Hope it helps to,

Please mark me as brainlist and follow me.

Answered by ayushyadav143
2

cos20°cos40°cos60°cos80°

=(1/2)(2cos20°cos40°)(1/2)cos80° [∵,cos60°=1/2]

=(1/4)[cos(20°+40°)+cos(20°-40°)]cos80°

=(1/4)(cos60°+cos20°)cos80°

=(1/4)(cos60°cos80°+cos20°cos80°)

=(1/4)(1/2)cos80°+(1/4)cos20°cos80°

=(1/8)cos80°+(1/4)(1/2)(2cos20°cos80°)

=(1/8)cos80°+(1/8)[cos(20°+80°)+cos(20°-80°)]

=(1/8)cos80°+(1/8)(cos100°+cos60°)

=(1/8)cos80°+(1/8)cos100°+(1/8)cos60°

=(1/8)(cos80°+cos100°)+(1/8)×(1/2)

=(1/8)[{2cos(80°+100°)/2}{cos(80°-100°)/2}]+(1/16)

=(1/8)(2cos90°cos10°)+(1/16)

=0+(1/16) [cos90°=0]

=1/16 (proved).

Similar questions