prove that: cos28-cos58-sin2=0
Answers
Answered by
2
Answer:
1+cos56+cos58−cos66=mcos20cos29sin33
=mcos28cos29sin33
=
2
m
[2cos28cos29]sin33
=
2
m
[cos57+cos1]sin33
=
4
m
[2cos57sin33+2cos1sin33]
=
4
m
[sin(90)+(sin24)+sin34−sin32]
=
4
m
[1−sin24
o
+sin34
o
−sin32
o
]
=
4
m
[1−cos66
o
cos56
o
−cos58
o
]
⇒
4
m
=1⇒m=4
Hence the value of m is 4
Similar questions