Math, asked by enriangnlaro4465, 1 month ago

Prove that Cos2A=1-tanA\1+tanA

Answers

Answered by mathdude500
5

Appropriate Question :-

Prove that .

 \boxed{ \sf{cos2A =  \frac{1 -  {tan}^{2}A }{1 +  {tan}^{2} A}}}

\large\underline{\bf{Solution-}}

Consider,

\rm :\longmapsto\:cos2A

can be rewritten as

 \rm \:  =  \: cos(A + A)

We know,

 \boxed{ \sf{cos(x + y) = cosxcosy - sinxsiny}}

Using this identity, we get

\rm \:  =  \: cosAcosA - sinAsinA

\rm \:  =  \:  {cos}^{2}A -  {sin}^{2}A

can be rewritten as

\rm \:  =  \: \dfrac{ {cos}^{2} A -  {sin}^{2}A }{1}

\rm \:  =  \: \dfrac{ {cos}^{2} A -  {sin}^{2}A }{ {cos}^{2} A +  {sin}^{2} A}

\rm \:  =  \: \dfrac{ {cos}^{2}A\bigg(1 - \dfrac{ {sin}^{2} A}{ {cos}^{2} A}  \bigg)  }{{cos}^{2}A\bigg(1  +  \dfrac{ {sin}^{2} A}{ {cos}^{2} A}  \bigg)}

\rm \:  =  \: \dfrac{1 -  {tan}^{2} A}{1 +  {tan}^{2} A}

Hence,

 \boxed{ \bf{cos2A  \: =   \: \frac{1 \:  -  \:  {tan}^{2}A }{1  \: +  \:  {tan}^{2} A}}}

Additional Information

Let's solve the same type of problem!!

Question :- Prove that,

 \boxed{ \sf{cos2A = 1 - 2 {sin}^{2}A =  {2cos}^{2}A - 1}}

Solution :-

Consider,

\rm :\longmapsto\:cos2A

can be rewritten as

\rm \:  =  \: cos(A + A)

\rm \:  =  \: cosAcosA - sinAsinA

\rm \:  =  \:  {cos}^{2}A -  {sin}^{2}A

\rm \:  =  \:  1 - {sin}^{2}A -  {sin}^{2}A

\bf \:  =  \:  1 -2 {sin}^{2}A

\rm \:  =  \:  1 -2(1 -  {cos}^{2}A)

\rm \:  =  \:  1 -2  + 2{cos}^{2}A

\bf\:  =  \:  2{cos}^{2}A - 1

Hence,

 \boxed{ \bf{cos2A  \: =  \: 1 - 2 {sin}^{2}A  \: = \:   {2cos}^{2}A - 1}}

Similar questions