prove that
cos2A-cos12A/sin12A-sin2A=tan7A
Answers
Answered by
4
Step-by-step explanation:
cosA - CosB = 2sin( A +B )/2 sin ( B - A )/2
SinA - Sin B = 2cos ( A + B )/2 sin ( A - B )/2
Now put the given values in these formulas
LHS
= 2sin( 2A + 12A )/2 sin( 12A - 2A )/2 / 2cos ( 12A + 2A ) sin 12A - 2A )/2
= 2sin7A sin5A / 2cos7A sin5A
= sin5A will cancel out
= therefore the remaining part will be 2 sin7A/ 2cos7A
= > 2sin7A/ 2cos7A = tan7A
Hence proved...
Similar questions