Math, asked by morganarthur204, 3 months ago

Prove that: cos2A + tan2A - 1 / sin2A = tan2A

Answers

Answered by harshkumarchaurasia4
1

The equality \frac{cos^2a+tan^2a-1}{sin^2a}=tan^2a

sin

2

a

cos

2

a+tan

2

a−1

=tan

2

a is proved

Step-by-step explanation:

Given that \frac{cos^2a+tan^2a-1}{sin^2a}=tan^2a

sin

2

a

cos

2

a+tan

2

a−1

=tan

2

a

To prove the given equality :

Taking LHS

\frac{cos^2a+tan^2a-1}{sin^2a}

sin

2

a

cos

2

a+tan

2

a−1

=\frac{cos^2a+tan^2a-(cos^2a+sin^2a)}{sin^2a}=

sin

2

a

cos

2

a+tan

2

a−(cos

2

a+sin

2

a)

( by using the identity cos^2x+sin^2x=1cos

2

x+sin

2

x=1 here x=a )

=\frac{cos^2a+tan^2a-cos^2a-sin^2a}{sin^2a}=

sin

2

a

cos

2

a+tan

2

a−cos

2

a−sin

2

a

=\frac{tan^2a-sin^2a}{sin^2a}=

sin

2

a

tan

2

a−sin

2

a

=\frac{tan^2a}{sin^2a}-\frac{sin^2a}{sin^2a}=

sin

2

a

tan

2

a

sin

2

a

sin

2

a

=\frac{tan^2a}{sin^2a}-1=

sin

2

a

tan

2

a

−1

=\frac{\frac{sin^2a}{cos^2a}}{sin^2a}-1=

sin

2

a

cos

2

a

sin

2

a

−1 ( we know tanx=\frac{sinx}{cosx}tanx=

cosx

sinx

)

=(\frac{sin^2a}{cos^2a}\times \frac{1}{sin^2a})-1=(

cos

2

a

sin

2

a

×

sin

2

a

1

)−1

=\frac{1}{cos^2a}-1=

cos

2

a

1

−1

=sec^2a-1=sec

2

a−1 ( by using secx=\frac{1}{cosx}secx=

cosx

1

)

=tan^2a=RHS=tan

2

a=RHS ( by using the identity sec^2x-tan^2x=1sec

2

x−tan

2

x=1 )

Therefore LHS=RHS

The equality \frac{cos^2a+tan^2a-1}{sin^2a}=tan^2a

sin

2

a

cos

2

a+tan

2

a−1

=tan

2

a is proved

Similar questions