Math, asked by Anonymous, 1 year ago

Prove That , Cos2x = 1 - Sin²x​

Answers

Answered by BoyBrainly
7

\underline{ \large{ \bold{Identity :- \: }}} </p><p>

 \to\bold{Cos( \:  A \:  +  \: B  \: )}  = \bold{Cos \:  A  \: \: \times  Cos \: B  \:  \:  -  \: Sin \:  A \: \:  \times \: Sin \:  B \: \:  } \\  \\  \to \bold{ {Cos  }^{2}x = 1 -   { Sin }^{2}x }</p><p>

\large{\underline{ \bold{ To \:   Prove :- \: }}}

\to  \bold{Cos2x \:  =   \:  \bold{ 1 - 2Sin}^{2}x }</p><p>

\large{ \underline{ \bold{Proof :- \: }}}

\to\bold{Cos2x \: } \\   \to\bold{Cos( \: x \:  +  \: x \: )} \\   \to\bold{Cosx \: \times  Cosx \:  -  \: Sinx \:  \times \: Sinx } \\   \to\bold{ {Cos}^{2}x    \: -  \:  {Sin}^{2}x } \\  \to \bold{ ( \: 1 - {Sin }^{2}x  \: ) -  {Sin }^{2}x \:  } \\  \to \bold{1 -  {Sin }^{2}x \:  -  \: {Sin }^{2}x } \\  \to \bold{1 - {2Sin}^{2}x}</p><p></p><p>

Answered by cuteboy406036
1

Answer:

see explanation

Explanation:

Using  Double angle formula

∙cos2x=cos2x−sin2x

and the identity cos2x=1−sin2x

⇒cos2x=cos2x−sin2x=(1−sin2x)−sin2x

=1−2sin2x= right hand side

hence proved.

please mark as brainlist and follow me

Similar questions