Math, asked by Anonymous, 1 year ago

Prove That , Cos2x = 2Cos²x - 1​

Answers

Answered by rathi07
4

Answer:

refer to attachment ☺️☺️☺️☺️

Attachments:
Answered by BoyBrainly
17

\underline{ \large{ \bold{Identity :- \: }}}

\to\bold{Cos( \:  A \:  +  \: B  \: )}  = \bold{Cos \:  A  \: \: \times  Cos \: B  \:  \:  -  \: Sin \:  A \: \:  \times \: Sin \:  B \: \:  } \\  \\  \to \bold{ {Sin }^{2}x = 1 -   {Cos }^{2}x }

   \large{\underline{ \bold{ To \:   Prove :- \: }}}

\to  \bold{Cos2x \:  =   \:  \bold{2  {Cos}^{2}x - 1}}</p><p>

 \large{ \underline{ \bold{Proof :- \: }}}

\to\bold{Cos2x \: } \\   \to\bold{Cos( \: x \:  +  \: x \: )} \\   \to\bold{Cosx \: \times  Cosx \:  -  \: Sinx \:  \times \: Sinx } \\   \to\bold{ {Cos}^{2}x    \: -  \:  {Sin}^{2}x } \\  \to \bold{{Cos}^{2}x \:  - ( \: 1 - {Cos }^{2}  \: ) } \\  \to \bold{{Cos }^{2}  \:  - 1 + {Cos }^{2} } \\  \to \bold{2{Cos }^{2}x - 1}</p><p></p><p>

Similar questions