Math, asked by amitkumar1893, 1 year ago

Prove that cos2x + cos2(x+π/3)+〖cos〗^2 (x-π/3)=3/2

Answers

Answered by rohitkumargupta
148
we know,
cos(90 + ø) = sinø
cos²x = (1 + sin2x)/2

we have to \underline{prove\: :-}
cos^{2} x + cos {}^{2} ({x}{} + \frac{\pi}{3}) + cos {}^{2} ( x - \frac{\pi}{3} ) = \frac{3}{2}

now, (1 + cos2x)/2 + [1 + cos(2x + \frac{2\pi}{3})]/2 + [ 1 + cos(2x - \frac{2\pi}{3})]/2 <br />\to\to\to\to\to\to\to\to\to\therefore\boxed{1 + cos2X = 2cos^2x}

1/2 [ 1 + cos2x + 1 + cos(2x + \frac{2\pi}{3}) + 1 + cos(2x - \frac{2\pi}{3})]

1/2[3 + cos2x + cos(2x + \frac{2\pi}{3}) + cos(2x - \frac{2\pi}{3})] <br />\to\to\to\to\to\to\to\to\to\therefore\boxed{cos(x + y) + cos(x - y) = 2cosx * cosy}

1/2[ 3 + cos2x + (2cos(2x) × cos\frac{2\pi}{3} ]

1/2[3 + cos2x + 2cos2X × cos(120) ]
1/2[3 + cos2X + 2cos2X × cos(90 + 30) ]

1/2[3 + cos2X + 2cos2X × (-sin30)] \to\to\to\to\to\to\to\to\to\therefore\boxed{cos(\frac{\pi}{2} + \theta) = -sin\theta}

1/2[3 + cos2X + 2cos2X × (-1/2)] \to\to\to\to\to\to\to\to\to\therefore\boxed{sin30\degree= 1/2} 1/2[ 3 + cos2X - cos2x] 3/2
Answered by simranraj2003abrs
64

this solution may help you

Attachments:
Similar questions