Prove that cos2x + cos2(x+π/3)+〖cos〗^2 (x-π/3)=3/2
Answers
Answered by
148
we know,
cos(90 + ø) = sinø
cos²x = (1 + sin2x)/2
we have to
now, (1 + cos2x)/2 + [1 + cos(2x + )]/2 + [ 1 + cos(2x - )]/2
1/2 [ 1 + cos2x + 1 + cos(2x + ) + 1 + cos(2x - )]
1/2[3 + cos2x + cos(2x + ) + cos(2x - )]
1/2[ 3 + cos2x + (2cos(2x) × cos ]
1/2[3 + cos2x + 2cos2X × cos(120) ]
1/2[3 + cos2X + 2cos2X × cos(90 + 30) ]
1/2[3 + cos2X + 2cos2X × (-sin30)]
1/2[3 + cos2X + 2cos2X × (-1/2)] 1/2[ 3 + cos2X - cos2x] 3/2
cos(90 + ø) = sinø
cos²x = (1 + sin2x)/2
we have to
now, (1 + cos2x)/2 + [1 + cos(2x + )]/2 + [ 1 + cos(2x - )]/2
1/2 [ 1 + cos2x + 1 + cos(2x + ) + 1 + cos(2x - )]
1/2[3 + cos2x + cos(2x + ) + cos(2x - )]
1/2[ 3 + cos2x + (2cos(2x) × cos ]
1/2[3 + cos2x + 2cos2X × cos(120) ]
1/2[3 + cos2X + 2cos2X × cos(90 + 30) ]
1/2[3 + cos2X + 2cos2X × (-sin30)]
1/2[3 + cos2X + 2cos2X × (-1/2)] 1/2[ 3 + cos2X - cos2x] 3/2
Answered by
64
this solution may help you
Attachments:
Similar questions