Math, asked by niraj085, 5 months ago

prove that cos²x+cos²(x+π÷3)+cos²(x-π÷3)=3÷2​

Answers

Answered by Anonymous
5

we have

LHS

 =  \frac{1 +  \cos2x }{2} +  \frac{1 +   \cos(2x +  \frac{2\pi}{3} )  }{2} +  \frac{1 +  \cos(2x -  \frac{2x}{3} ) }{2}

 =  \frac{1}{2}[3 +  \cos2x +  \cos(2x +  \frac{2\pi}{3} ) + \cos(2x -  \frac{2\pi}{3} ) ]

 =  \frac{1}{2}[3 +  \cos2x + 2 \cos2x \cos \frac{2\pi}{3}]

 =  \frac{1}{2} (3 +  \cos2x  + 2 \cos2x \cos(\pi -  \frac{\pi}{3} ))

 =  \frac{1}{2}(3 +  \cos2x - 2 \cos2x \cos( \frac{\pi}{3}))

 =  \frac{1}{2} (3 +  \cos2x - cosx) =  \frac{3}{2}

RHS

Similar questions