Math, asked by Ganesh094, 3 months ago

Prove that
cos²x + cos² (x+Π/3) + cos² (x - Π/3) = 3/2​

Answers

Answered by IdyllicAurora
25

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the concept of Trignometric Identities have been used. We see we are given the equation. Now we shall seperate the equation and find the value of different terms. Then we shall apply it together to find the answer.

Let's do it !!

________________________________________________

Solution :-

\\\;\bf{\mapsto\;\;\green{\cos^{2}x\;+\;\cos^{2}\bigg(x\;+\;\dfrac{\pi}{3}\bigg)\;+\;\cos^{2}\bigg(x\;-\;\dfrac{\pi}{3}\bigg)\;=\;\dfrac{3}{2}}}

Here,

\\\;\tt{\odot\;\;L.H.S.\;=\;\cos^{2}x\;+\;\cos^{2}\bigg(x\;+\;\dfrac{\pi}{3}\bigg)\;+\;\cos^{2}\bigg(x\;-\;\dfrac{\pi}{3}\bigg)}

\\\;\tt{\odot\;\;R.H.S.\;=\;\dfrac{3}{2}}

________________________________________________

~ For the value of different terms ::

We know that,

\\\;\sf{\leadsto\;\;\cos\:2x\;=\;2\cos^{2}x\;-\;1}

Then we get,

\\\;\sf{\rightarrow\;\;\cos^{2}x\;=\;\bf{\red{\dfrac{\cos\:2x\;+\;1}{2}}}}

Also,

\\\;\sf{\rightarrow\;\;\cos^{2}\bigg(x\;+\;\dfrac{\pi}{3}\bigg)\;=\;\bf{\pink{\dfrac{\cos\:2\bigg(x\:+\:\dfrac{\pi}{3}\bigg)\;+\;1}{2}}}}

And,

\\\;\sf{\rightarrow\;\;\cos^{2}\bigg(x\;-\;\dfrac{\pi}{3}\bigg)\;=\;\bf{\orange{\dfrac{\cos\:2\bigg(x\:-\:\dfrac{\pi}{3}\bigg)\;+\;1}{2}}}}

________________________________________________

~ For proving the equation ::

We have,

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\cos^{2}x\;+\;\cos^{2}\bigg(x\;+\;\dfrac{\pi}{3}\bigg)\;+\;\cos^{2}\bigg(x\;-\;\dfrac{\pi}{3}\bigg)}}

By applying the first value that we got, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\bigg(\dfrac{\cos\:2x\;+\;1}{2}\bigg)\;+\;\bigg(\cos^{2}\bigg(x\;+\;\dfrac{\pi}{3}\bigg)\bigg)\;+\;\bigg(\cos^{2}\bigg(x\;-\;\dfrac{\pi}{3}\bigg)\bigg)}}

Now applying the second value that we got, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\bigg(\dfrac{\cos\:2x\;+\;1}{2}\bigg)\;+\;\bigg(\dfrac{\cos\:2\bigg(x\:+\:\dfrac{\pi}{3}\bigg)\;+\;1}{2}\bigg)\;+\;\bigg(\cos^{2}\bigg(x\;-\;\dfrac{\pi}{3}\bigg)\bigg)}}

Now applying the third value that we got, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\bigg(\dfrac{\cos\:2x\;+\;1}{2}\bigg)\;+\;\bigg(\dfrac{\cos\:2\bigg(x\:+\:\dfrac{\pi}{3}\bigg)\;+\;1}{2}\bigg)\;+\;\bigg(\dfrac{\cos\:2\bigg(x\:-\:\dfrac{\pi}{3}\bigg)\;+\;1}{2}\bigg)}}

Now multiplying two in respective terms, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\bigg(\dfrac{\cos\:2x\;+\;1}{2}\bigg)\;+\;\bigg(\dfrac{\cos\:\bigg(2x\:+\:\dfrac{2\pi}{3}\bigg)\;+\;1}{2}\bigg)\;+\;\bigg(\dfrac{\cos\bigg(2x\:-\:\dfrac{2\pi}{3}\bigg)\;+\;1}{2}\bigg)}}

Now taking out ½ as common, we get

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\dfrac{1}{2}\;\bigg[1\;+\;1\;+\;1\;+\;\cos\:2x\;+\;\cos\bigg(2x\;+\;\dfrac{2\pi}{3}\bigg)\;+\;\cos\bigg(2x\;-\;\dfrac{2\pi}{3}\bigg)\bigg]}}

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\dfrac{1}{2}\;\bigg[1\;+\;1\;+\;1\;+\;\cos\:2x\;+\;\cos\bigg(2x\;+\;\dfrac{2\pi}{3}\bigg)\;+\;\cos\bigg(2x\;-\;\dfrac{2\pi}{3}\bigg)\bigg]}}

\\\sf{L.H.S.\:=\:\bf{\dfrac{1}{2}\bigg[3+\cos 2x+2\cos\bigg(\dfrac{2x+2x+\dfrac{2\pi}{3}-\dfrac{2\pi}{3}}{2}\bigg).\cos\bigg(\dfrac{2x-2x+\dfrac{2\pi}{3}+\dfrac{2\pi}{3}}{2}\bigg)\bigg]}}

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\dfrac{1}{2}\;\bigg[3\;+\;\cos\:2x\;+\;2\cos\:2x.\cos\dfrac{2\pi}{3}\bigg]}}

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\dfrac{1}{2}\;\bigg[3\;+\;\cos\:2x\;+\;2\cos\:2x.\bigg(-\:\cos\dfrac{\pi}{3}\bigg)\bigg]}}

This will give us,

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\dfrac{1}{2}\;\bigg[3\;+\;\cos\:2x\;+\;\bigg(-\:\cos\:2x\bigg)\bigg]}}

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\dfrac{1}{2}\;\bigg[3\;+\;\cos\:2x\;-\;\cos\:2x\bigg]}}

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\dfrac{1}{2}\;\bigg[3\;+\;0\bigg]}}

\\\;\sf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\dfrac{1}{2}\;\bigg[3\bigg]}}

\\\;\bf{\Longrightarrow\;\;L.H.S.\;=\;\bf{\blue{\dfrac{3}{2}}}}

Also we know that,

\\\;\bf{\Longrightarrow\;\;R.H.S.\;=\;\dfrac{3}{2}}

Combining both, we get

\\\;\bf{\Longrightarrow\;\;L.H.S.\;=\;R.H.S.\;=\;\bf{\blue{\dfrac{3}{2}}}}

This gives us the answer. So its proved.

\\\;\qquad\qquad\underline{\boxed{\tt{\purple{Hence,\;\;Proved}}}}

________________________________________________

More to know :-

\\\;\sf{\leadsto\;\;\sin(-\:x)\;=\;-\:\sin\:x}

\\\;\sf{\leadsto\;\;\cos(-\:x)\;=\;\cos\:x}

\\\;\sf{\leadsto\;\;\cos(x\:+\:y)\;=\;\cos\:x\cos\:y\;-\;\sin\:x\:\sin\:y}

\\\;\sf{\leadsto\;\;\cos(x\:-\:y)\;=\;\cos\:x\cos\:y\;+\;\sin\:x\:\sin\:y}

\\\;\sf{\leadsto\;\;\sin(x\:+\:y)\;=\;\sin\:x\cos\:y\;+\;\cos\:x\:\sin\:y}

\\\;\sf{\leadsto\;\;\sin(x\:-\:y)\;=\;\sin\:x\cos\:y\;-\;\cos\:x\:\sin\:y}


Anonymous: Splendid!!! :D
IdyllicAurora: Thanks :)
rashmikerketta1981: dii
rashmikerketta1981: listen
rashmikerketta1981: I need your help
rashmikerketta1981: Please answer my english end QUESTION
rashmikerketta1981: please
Ganesh094: Don't give answer over the left because when I want to see next step again I want to move left to write to see ans so iam confuse how the step comes you can answer normally It should be with clear in one page I think that's enough
IdyllicAurora: @Ganesh that comes automatically by the use of latex. Please try seeing the answer from 'website'. Kindly copy the link of this question and paste in URL section of browser and then use desktop site to see the answer. The answer will come in a page and single line view.
Ganesh094: @Aurora Thanks I forgotten that idea :)
Answered by taqueerizwan2006
3

Question:-

Prove : cos²x+cos²(x+π/3)+cos²(x-π/3)=3/2

Answer:-⤵️

☆We know that, cos2x = 2cos²x - 1

→ 1 + cos2x = 2cos²x

→ cos²x = (1+cos2x)/2

Using this :

→ (1+cos2x)/2 + [1+cos2(x+π/3)]/2 + [1+cos2(x-π/3)]/2

→ ½[3 + cos2x + cos2(x+π/3) + cos2(x-π/3)]

→ ½[3 + cos2x + cos(2x+2π/3) + cos(2x-2π/3)]

☆We know : cos(A+B) + cos(A-B) = 2 cosA cosB

→ ½[3 + cos2x + 2 cos2x cos2π/3]

→ ½[3 + cos2x + 2 cos2x cos(π-π/3)]

→ ½[3 + cos2x + 2 cos2x (-cosπ/3)]

→ ½[3 + cos2x - ½×2 cos2x]

→ ½[3 + cos2x - cos2x]

→ ½ × 3

→ 3/2 (RHS)

Hence Proved ✔


Ganesh094: Thank You ❤️
Similar questions