Prove that cos²x+cos²y-2cosx.cosy.cos(x+y)=sin²(x+y)
Answers
Answered by
24
cos^2x+cos^2y-2cosx.cosy.cos(x+y)
cos^2x+1-sin^2y-2cosx.cosy.cos(x+y)
1+cos^2x-sin^2y-2cosx.cosy.cos(x+y)
1+cos(x+y).cos(x-y)-2cosx.cosy.cos(x+y)
1+cos(x+y){ cos(x-y)-2cosx.cosy }
1+cos(x+y){ cosx.cosy-sinx.siny-2cosx.cosy }
1+cos(x+y){ -cosx.cosy + sinx.siny }
1-cos(x+y){ cosx.cosy-sinxsiny }
1-cos(x+y).cos(x+y)
1-cos^2(x+y)
sin^2(x+y).
cos^2x+1-sin^2y-2cosx.cosy.cos(x+y)
1+cos^2x-sin^2y-2cosx.cosy.cos(x+y)
1+cos(x+y).cos(x-y)-2cosx.cosy.cos(x+y)
1+cos(x+y){ cos(x-y)-2cosx.cosy }
1+cos(x+y){ cosx.cosy-sinx.siny-2cosx.cosy }
1+cos(x+y){ -cosx.cosy + sinx.siny }
1-cos(x+y){ cosx.cosy-sinxsiny }
1-cos(x+y).cos(x+y)
1-cos^2(x+y)
sin^2(x+y).
Answered by
7
Step-by-step explanation:
Your answer is attached
Hope it's help u...:)
Attachments:
Similar questions