Prove that `(cos3 theta)/(cos theta)+(sin3 theta)/(sin theta)=4cos2 theta`
Answers
Answered by
0
Step-by-step explanation:
LHS:
cosθ−sinθ
cos
3
θ−sin
3
θ
+
cosθ+sinθ
cos
3
θ+sin
3
θ
we use two identities,
⇒a
3
−b
3
=(a−b)(a
2
+b
2
+ab)
⇒a
3
+b
3
=(a+b)(a
2
+b
2
−ab)
using the above identities,
=
(cosθ−sinθ)
(cosθ−sinθ)(cos
2
θ−sin
2
θ+cosθ.sinθ)
+
(cosθ+sinθ)
(cosθ+sinθ)(cos
2
θ−sin
2
θ−cosθ.sinθ)
=cos
2
θ+sin
2
θ+cosθ.sinθ+cos
2
θ+sin
2
θ−cosθ.sinθ
=2(cos
2
θ+sin
2
θ)
=2 (∵cos
2
θ+sin
2
θ=1)
Hence, proved.
Similar questions