Math, asked by suchitrasahu, 1 year ago

prove that cos3a-sin3a/cosa+sina = 1-2sin2a

Answers

Answered by mysticd
22
Hi ,

1 ) cos3A - sin3A

= 4cos³A - 3cosA - ( 3sinA - 4sin³A )

= 4cos³A - 3cosA - 3sinA + 4sin³A

= 4( cos³ A + sin³A ) - 3( sinA + cosA )

= 4[(cosA+sinA)(cos²A+sin² A-

cosAsinA )] - 3 ( cosA + sinA )

= 4[ ( cosA + sinA )(1 - cosAsinA ) ]

- 3 ( cosA + sinA )

= ( CosA + sinA ) ( 4 - 4sinAcosA - 3 )

= ( CosA + sinA ) ( 1 - 2 × 2sinAcosA )

= ( cosA + sinA ) ( 1 - sin2A ) ---( 1 )

According to the problem given ,

LHS = (cos3A - sin3A )/( cosA + sinA)

From ( 1 )

= [(cosA+sinA)(1 - sin2A)]/(cosA+sinA)

= 1 - sin2A

= RHS

I hope this helps you.

:)
Similar questions