Math, asked by meghakatiyar1, 10 months ago

prove that -
Cos³x-sin³x/cosx - sinx = 1/2( 1+ sin2x)​

Answers

Answered by RvChaudharY50
24

\color {red}\huge\bold\star\underline\mathcal{Question:-}

prove that -

Cos³x-sin³x/cosx - sinx = 1/2( 1+ sin2x)

\rule{200}{4}

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\:Answer}}}}}}}}}}

we \: know \: that \:  =

(a ^{3}  -  {b}^{3} ) =(a - b) ( {a}^{2}  +  {b}^{2}  + ab)

so -  -  -  -  >

(cos³x - sin³x) = (cosx-sinx)(cos²x+sin²x+cosxsinx)

(cos³x - sin³x) = (cosx-sinx)(1+cosxsinx)

putting this in Question we get,

(cosx-sinx)(1+cosxsinx)/(cosx-sinx)

= (1+cosxsinx)

Multiply and divide by 2 now we get,

 \frac{1}{2} (2 + 2sinx \times cosx)

 \frac{1}{2} (2 + sin2x)

\huge\blue{</strong><strong>PROVED</strong><strong>}

Similar questions