prove that cos4A=8cos⁴A-Acos²A+1+1
Answers
Answered by
0
L.H.S. = cos 4A
= cos 2(2A)
= 1 – 2 sin2 2A
= 1 – 2(2 sin A cos A)2
= 1 – 8 sin2A cos2A
= 1 – 8 (1 – cos2A) cos2A [1 – cos2A = sin2A]
= 1 – 8 cos2A + 8cos4A
= R.H.S.
HOPE THIS HELPS YOU
Answered by
1
Required Answer:-
Given to Prove:
- cos(4x) = 8cos⁴(x) - 8cos²(x) + 1
Proof:
Taking LHS,
We know that,
➡ cos(2x) = 2cos²(x) - 1
Therefore,
cos(4x)
= 2cos²(2x) - 1
= 2{cos(2x)}² - 1
= 2{2cos²(x) - 1}² - 1
= 2{4cos⁴(x) + 1 - 4cos²(x)} - 1
= 8cos⁴(x) + 2 - 8cos²(x) - 1
= 8cos⁴(x) - 8cos²(x) + 2 - 1
= 8cos⁴(x) - 8cos²(x) + 1
= RHS (Hence Proved)
Formula Used:
- cos(2x) = 2cos²(x) - 1
Similar questions