Prove that cos⁴A + sin⁴A-2sin²A cos²A=1
Answers
Answered by
3
I have attached the full solution you may go through it
Attachments:
Answered by
2
To prove -
\begin{gathered} \frac{ \sin( {a}^{4} ). \cos( {a}^{4} ) }{1 - 2 \sin( {a}^{2}) . { \cos(a) }^{2} } = 1 \\ \end{gathered}
1−2sin(a
2
).cos(a)
2
sin(a
4
).cos(a
4
)
=1
Proof -
LHS →
Taking Numerator -
sin⁴a + cos ⁴a →( sin²a)² + (cos²a)²
As we know that -
sin²a + cos²a → ( sina +cosa)² - 2sina.cosa.
So value of sin⁴a + cos ⁴a will -
(sin²a+cos²a)- 2sin²a.cos²a
As we know that sin²a+cos²a = 1 , so -
(1)² - 2sin²acos²a
Numerator → 1 - 2cos²a . sin²a
Now putting the value of numerator in the fraction -
\begin{gathered} \frac{1 - 2 {sin(a)}^{2}.cos( {a)}^{2} }{1 - 2sin ({a})^{2} .cos ({a})^{2} } \\ = 1\end{gathered}
1−2sin(a)
2
.cos(a)
2
1−2sin(a)
2
.cos(a)
2
=1
→ 1 = LHS= RHS
hence proved.
.
.
.
.
hope this is helpful too buddy
.
.
.
.
Morning all ❤️❤️❤️
.
.
.
.
@bossygirl❤️❤️❤️
.
.
.
.
please subscribe my channel too
sr.gamerz_908
.
.
.
.
(✿^‿^)(✿^‿^)(✿^‿^)(✿^‿^)❤️❤️
Similar questions