Math, asked by nivruttikamble13, 10 months ago

prove that
cos⁴theta - cos² theta = sin⁴theta - sin² theta ​

Answers

Answered by krisim0105
0

Answer:

samjh me na aay to fir se puchh Lena Bata dunga

Attachments:
Answered by BrainlyPopularman
3

TO PROVE :

 \\  \sf \to \:  { \cos}^{4} ( \theta) -  { \cos}^{2}( \theta) = { \sin}^{4} ( \theta) -  { \sin}^{2}( \theta) \\

SOLUTION :

Let's take L.H.S. –

 \\  \sf \:  \:   =  \: \:   { \cos}^{4} ( \theta) -  { \cos}^{2}( \theta) \\

• We know that –

 \\  \sf \:  \implies \:   { \sin}^{2} ( \theta)  +  { \cos}^{2}( \theta) = 1 \\

• So that –

 \\  \sf \:  \:   =  \: \:    {[1 -  { \sin}^{2}( \theta) ]}^{2}  - [1 -  { \sin}^{2}( \theta) ] \\

 \\  \sf \:  \:   =  \: \:  1 +  { \sin}^{4} ( \theta) - 2 { \sin}^{2}( \theta) - 1  +  { \sin}^{2}( \theta) \\

 \\  \sf \:  \:   =  \: \:   { \sin}^{4} ( \theta) - 2 { \sin}^{2}( \theta)  +  { \sin}^{2}( \theta) \\

 \\  \sf \:  \:   =  \: \:   { \sin}^{4} ( \theta) +  { \sin}^{2}( \theta) [1 - 2]\\

 \\  \sf \:  \:   =  \: \:   { \sin}^{4} ( \theta) +  { \sin}^{2}( \theta) [ - 1]\\

 \\  \sf \:  \:   =  \: \:   { \sin}^{4} ( \theta)  -   { \sin}^{2}( \theta) \\

 \\  \sf \:  \:   =  \: \: R.H.S. \\

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large { \overbrace{ \underbrace{ \sf  \: Hence \:  \: proved \: }}} \\

 \\ \rule{220}{2} \\

Similar questions