prove that, cos4x+cos3x+cos2x/sin4x+sin3x+sin2x=cos2x
Answers
Answered by
10
Answer requested are as follows---
(cos4x+cos3x+cos2x)/(sin4x+sin3x+sin2x)=cotx
LHS
=(cos4x+cos2x+cos3x)/(sin4x+sin2x+sin3x)
=[2cos3x.cosx+cos3x]/[2sin3x.cosx+sin3x]
=[cos3x(2cosx+1)]/[sin3x(2cosx+1)]
=cos3x/sin3x
=cot3x , proved
Answered by
4
Answer:
Step-by-step explanation:
cos4x+cos3x+cos2x)/(sin4x+sin3x+sin2x)=cotx
LHS
=(cos4x+cos2x+cos3x)/(sin4x+sin2x+sin3x)
=[2cos3x.cosx+cos3x]/[2sin3x.cosx+sin3x]
=[cos3x(2cosx+1)]/[sin3x(2cosx+1)]
=cos3x/sin3x
=cot3x , proved
Similar questions
Geography,
7 months ago
Biology,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Math,
1 year ago
India Languages,
1 year ago