Math, asked by lomdiwala, 5 months ago

prove that cos4x + cos3x + cos2x /
sin4x + sin3x + sin2x = cot3x​

Answers

Answered by ANSWERPLSS
1

(cos4x+cos3x+cos2x)/(sin4x+sin3x+sin2x)=cotx

LHS

=(cos4x+cos2x+cos3x)/(sin4x+sin2x+sin3x)

=[2cos3x.cosx+cos3x]/[2sin3x.cosx+sin3x]

=[cos3x(2cosx+1)]/[sin3x(2cosx+1)]

=cos3x/sin3x

=cot3x , proved

MARK ME AS BRAINLIEST PLEASE

Answered by BrainlyTwinklingstar
11

Question

Prove that \sf \dfrac{cos4x + cos3x + cos2x}{ sin4x + sin3x + sin2x} = cot3x

Answer

We know,

 \sf sinC + sinD = 2sin \bigg( \dfrac{C + D}{2} \bigg) cos  \bigg(\dfrac{C  -  D}{2}  \bigg)

 \sf cosC + cosD = 2cos\bigg( \dfrac{C + D}{2} \bigg) cos  \bigg(\dfrac{C  -  D}{2}  \bigg)

Given,

\sf \dfrac{cos4x + cos3x + cos2x}{sin4x + sin3x + sin2x}

\sf  = \dfrac{(cos4x + cos2x )+ cos3x}{(sin4x + sin2x) + sin3x}

\sf  = \dfrac{2cos \bigg( \dfrac{4x + 2x}{2}  \bigg)cos \bigg( \dfrac{4x - 2x}{2}  \bigg) cos3x }{ 2sin \bigg( \dfrac{4x + 2x}{2}  \bigg)cos \bigg( \dfrac{4x - 2x}{2}  \bigg) sin3x }

\sf  = \dfrac{2cos \bigg( \dfrac{6x}{2}  \bigg)cos \bigg( \dfrac{2x}{2}  \bigg) cos3x }{ 2sin \bigg( \dfrac{6x}{2}  \bigg)cos \bigg( \dfrac{2x}{2}  \bigg) sin3x }

\sf  = \dfrac{2cos3x \: cosx +  cos3x }{ 2sin 3x \: cosx +  sin3x }

\sf  = \dfrac{cos3x (2 cosx +  1)}{ sin 3x (2 cosx +  1) }

\sf  = \dfrac{cos3x}{sin 3x }

 \sf = cot3x

Hence proved !

Similar questions