prove that (cos4x sin3x - cos2x sinx) / (sin4x sinx + cos6x cosx) = tan 2x
Answers
Answer:
proved
Step-by-step explanation:
Given prove that (cos4x sin3x - cos2x sinx) / (sin4x sinx + cos6x cosx) = tan 2x
Consider the given , multiply and divide by 2 we get
2cos4x sin3x - 2cos2x sinx) / 2sin4x sinx + 2cos6x cosx
We know that 2 cos a sin b = sin (a + b) - sin (a - b)
2 sin a sin b = cos(a - b) - cos(a + b)
2 cos a cos b = cos(a + b) + cos(a - b)
sin (4x + 3x) - sin (4x - 3x) - sin (2x + x) - sin (2x - x) / cos(4x - x) - cos(4x + x) + cos(6x + x) + cos(6x - x)
sin 7x - sin x - sin 3x + sin x / cos 3 x - cos 5 x + cos 7x + cos 5x
sin 7 x - sin 3 x / cos 3 x + cos 7 x
2 cos 7x + 3x / 2 sin 7x - 3 x /2 / 2 cos 3 x + 7 x/2 cos 7 x - 3 x / 2
2 cos 5 x sin 2 x / 2 cos 5 x cos 2 x
sin 2x / cos 2 x
tan 2 x
Step-by-step explanation:
Given prove that (cos4x *sin3x - cos2x* sinx) / (sin4x* sinx + cos6x* cosx) = tan 2x
Consider the given , multiply and divide by 2 we get
= 2(cos4x* sin3x - cos2x* sinx) / 2(sin4x* sinx + cos6x* cosx)
= 2cos4x* sin3x - 2cos2x* sinx) / 2sin4x *sinx + 2cos6x* cosx
We know that, 2 cos a sin b = sin (a + b) - sin (a - b)
2 sin a sin b = cos(a - b) - cos(a + b)
2 cos a cos b = cos(a + b) + cos(a - b)
= sin (4x + 3x) - sin (4x - 3x) - sin (2x + x) - sin (2x - x) / cos(4x - x) - cos(4x + x) + cos(6x + x) + cos(6x - x)
= sin 7x - sin x - sin 3x + sin x / cos 3 x - cos 5 x + cos 7x + cos 5x
= sin 7 x - sin 3 x / cos 3 x + cos 7 x
We Know That , sin a - sin b = 2 sin () * cos ()
cos a + cos b = 2 cos() * cos()
= 2 cos (7x + 3x / 2)* sin (7x - 3 x /2) / 2 cos (3x + 7x/2) *cos (7x - 3x / 2)
= 2 cos 5 x* sin 2 x / 2 cos 5 x *cos 2 x
= sin 2x / cos 2 x
= tan 2 x
Hence Proved
Please Mark Me Brainlist