Math, asked by ij4529, 9 months ago

Prove that cos6x +cos4x / sin6x - sin 4x = cot x

Answers

Answered by nandika32
4

Answer:

answer...................

Attachments:
Answered by mysticd
6

 LHS = \frac{cos 6x + cos 4x }{sin 6x - sin 4x }

 = \frac{\cancel {2 cos \Big( \frac{6x+4x}{2}\Big)} cos \Big(\frac{6x -4x}{2} \Big) }{\cancel {2 cos \Big( \frac{6x+4x}{2}\Big) }sin \Big(\frac{6x -4x}{2} \Big) }

 = \frac{ cos \Big(\frac{2x}{2}\Big)}{sin \Big(\frac{2x}{2}\Big)}

 = \frac{cos x }{sin x }

 = cot x

 = RHS

Therefore.,

\red{ \frac{cos 6x + cos 4x }{sin 6x - sin 4x }}

 \green {= cot x}

•••♪

Similar questions