Math, asked by Ube5, 1 year ago

prove that cos7°-sin7°/cos7°+ sin 7°= tan 38°

Answers

Answered by Martin84
5

Answer

rhs \\  =\tan(38)  \\=  \tan(45 - 7)  \\ = \frac{ \tan(45) -  \tan(7)  }{1  +  \tan(45) \tan(7)  }  \\=  \frac{1 -  \tan(7) }{1 +  \tan(7) }  \\  =\frac{ \frac{( \cos(7)   -  \sin(7)) }{ \cos(7) } }{ \frac{ (\cos(7) \sin(7) ) }{ \cos(7) } }  \\ = \frac{ \cos(7)  -  \sin(7) }{ \cos(7) +  \sin(7)  }  \\ hence \: lhs \:  = rhs \\ proved \\ formula \: used \:  \\  \tan(x  - y)  =   \frac{ \tan(x)   -  \: \tan(y) }{1 +  \tan(x) \tan(y)  }  \\  \tan(45)  = 1 \\  \tan(x)  =  \frac{ \sin(x) }{ \cos(y) }  \\

:-)

Answered by aswalhridya
0

Step-by-step explanation:

Since tan 7 degree is equals to sin 7degree divide by cos 7degree

Attachments:
Similar questions