Math, asked by smithdestiny8582, 2 months ago

Prove that cos7A/secA -sin7A/cosecA=cos 8A

Answers

Answered by Anonymous
127

 \huge \rm {Answer:-}

★The solution of this question is based on one single formula,i.e,

 \mapsto \bf {cos (A+B)=cosA\: cos B-SinA\:sinB}

★well,Let's solve and see how it goes ,

 \to \bf \red {\underline{Given:-}}

 \to \bf {\frac{cos7A}{secA}-\frac{sin7A}{cosecA}=cos 8A}

 \to \bf \blue {\underline{To\: prove:-}}

 \implies{L.H.S=R.H.S}

∵R.H.S=cos8A

 \to \bf \pink {\underline{Taking\: L.H.S:-}}

 \to \bf {\frac{cos7A}{secA}-\frac{sin7A}{cosecA}}

 \to \bf \purple {\underline{We\: know:-}}

 \to \bf {cosθ=\frac{1}{secθ}}

★so,  \to \bf {secθ=\frac{1}{cosθ}}

★And also,

 \to \bf {sinθ=\frac{1}{cosecθ}}

★so, \to \bf {cosecθ=\frac{1}{sinθ}}

★Supplanting these reciprocal identities,

\large \to \bf {\frac{cos7A}{\frac{1}{cosA}}-\frac{sin7A}{\frac{1}{sinA}}}

 \to \bf {cos7A\:cosA-sin7A\: sinA}

★Now,it is in the form of

  \mapsto \bf {cos (A+B)=cosA\: cos B-SinA\:sinB}

★A=7A and B=A

 \to \bf \orange {\underline{Thus,}}

 \to \bf {cos(7A+A)}

 \mapsto \bf {L.H.S=cos8A}

\large \implies \bf {\fbox{L.H.S=R.H.S}}

 \to \bf \green {\underline{\underline{Hence\: Proved//}}}

Answered by Anonymous
223

\underline  \bold \pink{GIVEN \: :-} \\  \\

\bold{  \rightarrow \: \frac{ \cos \: 7a }{ \sec \: a }  -  \frac{ \sin \: 7a}{ \cosec \: a }  =  \cos \: 8a} \\ \\

\underline \bold \blue{TO \: FIND:-} \\  \\

 \bold{ \rightarrow \: LHS \: = \: RHS \: } \\ \\

\underline \bold \orange{SOLUTION \: :-} \\  \\

 \bold\blue{Take \:  LHS,} \\

\bold{  \Rightarrow \: LHS = \frac{ \cos \: 7a }{ \sec \: a }  -  \frac{ \sin \: 7a}{ \cosec \: a7 }  }\\ \\

 \bold \green{Write,}\\

 \bold{\Rightarrow\:  \frac{1}{   \:\sec \: a} =  \cos \: a \:, and  \frac{1}{ \csc \: a} =  \sin \: a }\\ \\

 \bold{\Rightarrow \:LHS =  \cos \: 7A  \times   \cos A  =  \sin 7A \times  \sin A}\\ \\

 \bold \red{Using  \: identity,}\\ \\

\bold{ \cos A \: \cos B \:   -  \sin A  \sin B =  \cos(A + B)} \\

 \bold{ \Rightarrow \: Here, A=7A  \: and \:  B = A} \\

 \bold{ \Rightarrow \: LHS = cos(7A + A)} \\

 \bold{ \Rightarrow \: LHS = cos(8A) \: } \\ \\

 \boxed{  \underline  \bold \pink{\Rightarrow \: LHS =  RHS}}  \\ \\

 \underline \bold  \green{Hence  \: proved.}

Similar questions