Math, asked by Gaganbilkhu, 4 months ago

prove that : cos7x+cos5x/sin7x+sin5x=cot x​

Answers

Answered by LaeeqAhmed
4

\color{red}\huge{\underline{\underline{GIVEN\dag}}}

  •  \frac{ \cos(7x) +  \cos(5x)  }{ \sin(7x)  +  \sin(5x) }

\color{red}\huge{\underline{\underline{SOLUTION\dag}}}

We know that;

  \blue{ \boxed{\sin(c)  +  \sin(d)  = 2  \sin( \frac{c + d}{2} )  \cos( \frac{c - d}{2} ) }}

 \blue{ \boxed{\cos(c)  +  \cos(d)  = 2  \cos( \frac{c + d}{2} )  \cos( \frac{c - d}{2} ) }}

 \implies  \frac{2 \cos( \frac{7x + 5x}{2} )  \cos( \frac{7x - 5x}{2} ) }{2 \sin( \frac{7x + 5x}{2} )  \cos( \frac{7x - 5x}{2} ) }

 \implies   \frac{\cos(6x) \cos(x)  }{ \sin(6x) \cos(x)  }

 \orange { \boxed{\therefore  \frac{ \sin(7x)  +   \sin(2x)  }{ \cos(7x)  +  \cos(2x) } =  \tan(6x) }}

HOPE THAT HELPS!!

Similar questions