Math, asked by yawar18881, 1 month ago

prove that cos9x-cos7x/sin9x-sin7x = -tan8x

Answers

Answered by sreejavoolaka
0

Answer:

Formulas :

1)sin(C+D)=2sin(

2

C+D

)cos(

2

C−D

)

2)cos(C+D)=2cos(

2

C+D

)cos(

2

C−D

)

Rewriting the above equation ;

(cos9x+cos3x)+(cos7x+cos5x)

(sin9x+sin3x)+(sin7x+sin5x)

2cos(6x)cos(2x)+2cos(6x)cos(x)

2sin(6x)cos(2x)+2sin(6x)cos(x)

cos6x

sin6x

=tan6x

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Consider,

LHS

\rm :\longmapsto\:\dfrac{cos9x - cos7x}{sin9x - sin7x}

We know,

 \boxed{ \sf \: cosx - cosy =  - 2sin\bigg(\dfrac{x + y}{2} \bigg) sin\bigg(\dfrac{x - y}{2} \bigg)}

and

 \boxed{ \sf \: sinx - siny =   2cos\bigg(\dfrac{x + y}{2} \bigg) sin\bigg(\dfrac{x - y}{2} \bigg)}

So,

On applying these Identities, we get

\rm \:  =  \:  \: \:\dfrac{ - 2 \: sin\bigg(\dfrac{9x + 7x}{2} \bigg)  \: sin\bigg(\dfrac{9x - 7x}{2} \bigg) }{2 \: cos\bigg(\dfrac{9x + 7x}{2} \bigg)  \: sin\bigg(\dfrac{9x - 7x}{2} \bigg) }

\rm \:  =  \:  \: \:\dfrac{ -  \: sin\bigg(\dfrac{16x}{2} \bigg)  \: sin\bigg(\dfrac{2x}{2} \bigg) }{ \: cos\bigg(\dfrac{16x}{2} \bigg)  \: sin\bigg(\dfrac{2x}{2} \bigg) }

\rm \:  =  \:  \: \: -  \: \dfrac{sin8x}{cos8x}

\rm \:  =  \:  \: \: -  \: tan8x

\bf :\longmapsto\:\dfrac{cos9x - cos7x}{sin9x - sin7x}  =  -  \: tan8x

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional information :-

 \boxed{ \sf \: sinx  +  siny =   2cos\bigg(\dfrac{x  -  y}{2} \bigg) sin\bigg(\dfrac{x  +  y}{2} \bigg)}

 \boxed{ \sf \: cosx  +  cosy =   2cos\bigg(\dfrac{x  -  y}{2} \bigg) cos\bigg(\dfrac{x  +  y}{2} \bigg)}

 \boxed{ \sf \: 2sinxcosy = sin(x + y) + sin(x - y)}

 \boxed{ \sf \: 2cosxcosy = cos(x + y) + cos(x - y)}

 \boxed{ \sf \: 2sinxsiny = cos(x  - y)  -  cos(x  +  y)}

Similar questions