Prove that:
(cosA/1+cosA)+(1+sinA/cosA)
Answers
Answered by
0
Answer:
Step-by-step explanation:
=(cosA+sinA+1)/(cosA-sinA+1)
Dividing in Nr and Dr by cosA
=(1+tanA+secA)/(1-tanA+secA)
=[secA+tanA+1]/[secA-tanA+1]. , [putting 1=sec^2A-tan^2A=(secA+tanA)(secA-
tanA) in Nr.]
=[(secA+tanA)+(secA+tanA)(secA-tanA)]/[secA-tanA+1].
= (secA+tanA)(1+secA-tanA)/(secA-tanA+1)
= secA + tanA
= (1/cosA); + (sinA/cosA)
=(1+sinA)/cosA
Multiplying in Nr and Dr by (1-sinA)
=(1+sinA)(1-sinA)/cosA.(1-sinA)
=(1-sin^2A)/cosA.(1-sinA)
= cos^2A/cosA.(1-sinA)
= cosA/(1-sinA). Proved.
hibaaaaa:
hey
Similar questions