Math, asked by arunavasuaru, 11 months ago

prove that cosa/1+sina + 1+sina/cosa=1+sec​

Answers

Answered by Anonymous
13

Correct Questions:

To prove :

  •  \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }  +  \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }  = 2  \sec( \alpha )

Proof :

L.H.S. =

  = \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }  +  \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }

Taking L.C.M of Denominator and Solving,

We get,

 =  \frac{ { \cos}^{2} \alpha  +  {(1 +  \sin\alpha ) }^{2}  }{ \cos \alpha (1 +  \sin \alpha )  }

But,

We know that,

  •  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

Therefore,

We get,

 =  \frac{ { \cos }^{2}  \alpha  +  { \sin}^{2}  \alpha  + 2 \sin( \alpha ) + 1 } { \cos \alpha (1 +  \sin\alpha ) }

But,

We know that,

  •  { \sin }^{2}  \beta  +  { \cos }^{2}  \beta  = 1

Therefore,

We get,

 =  \frac{1 +2 \sin( \alpha )  +  1}{ \cos\alpha (1 +  \sin \alpha )  }  \\  \\  =  \frac{2 +  2\sin( \alpha ) }{ \cos \alpha (1 +  \sin \alpha )  }  \\  \\  =  \frac{2(1 +  \sin \alpha ) }{ \cos \alpha (1 +  \sin \alpha )  }  \\  \\  =  \frac{2}{ \cos( \alpha ) }

But,

We know that,

  •  \frac{1}{ \cos( \beta ) }  =  \sec( \beta )

Therefore,

We get,

 = 2 \sec( \alpha )

= R.H.S

Since,

  • L.H.S = R.H.S

Hence,

  • Proved
Answered by pooja2004jha
2

Answer:

LHS=cosA/1+sinA+1+sinA/cosA

=cos^2A+1+2sinA+sin^2A/(1+sinA)cosA

=1+1+2sinA/(1+sinA)cosA

=2(1+sinA)/(1+sinA)cosA

1+1/cosA

1+secA=RHS=proved

Similar questions