Math, asked by surajnemises10, 1 year ago

prove that cosA/1+sinA +1+sinA/cosA=2SecA​

Answers

Answered by Anonymous
7

Step-by-step explanation:

We have to prove that,

\frac{cosA}{1+sinA}+\frac{1+sinA}{cosA}=2secA

Proof:

For simplicity,

Let's denote angle A as alpha.

Therefore,

LHS =  \frac{ \cos( \alpha ) }{1 +   \sin( \alpha ) } +  \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }   \\  \\

Taking LCM and solving,

we get,

 =  \frac{ { \cos}^{2} \alpha  +  {(1 +  \sin \alpha ) }^{2}  }{(1 +  \sin \alpha) \cos( \alpha )   }  \\  \\  =  \frac{ { \cos }^{2}  \alpha  +  { \sin }^{2} \alpha  + 1 + 2 \sin( \alpha )  }{ \cos \alpha(1 +  \sin \alpha )  }  \\  \\

But,

we know that,

  { \sin }^{2} \alpha   +  { \cos }^{2}  \alpha  = 1

Therefore,

Putting the values,

we get,

 =  \frac{1 + 1 + 2 \sin( \alpha ) }{(1 +  \sin \alpha ) \cos( \alpha )  }  \\  \\  =  \frac{2 + 2 \sin( \alpha ) }{ \cos \alpha (1 +  \sin\alpha )  }  \\  \\  = \frac{2(1 +  \sin \alpha ) }{ \cos \alpha(1 +  \sin \alpha )   }  \\  \\  =  \frac{2}{ \cos( \alpha ) }

But,

we know that,

 \frac{1}{ \cos( \alpha ) }  =  \sec( \alpha )

Therefore,

putting the values,

we get,

 = 2 \sec \alpha  = RHS

Therefore,

\bold{\frac{cosA}{1+sinA}+\frac{1+sinA}{cosA}=2secA}

Hence, Proved

Similar questions