Math, asked by karanbezbaruah1995, 10 months ago

prove that cosA/1+sinA + 1+sinA/cosA = 2secA​

Answers

Answered by Pass12
1

Answer:

Step-by-step explanation:

1+sinA/cosA + cosA/1+sinA

=(1+sinA)/cosA+cosA/1+sinA.1-sinA/1-sinA

=1+sinA/cosA+cosA(1-sinA)/cos^A

=1+sinA/cosA+1-sinA/cosA

=2/cosA

=2secA

Answered by Anonymous
9

{ \red{ \underline{ \huge{ \mathfrak{answer}}}}}

 \frac{ \cos \: a }{1 +  \sin \: a}  +  \frac{1 +  \sin \: a }{ \cos \: a }

 \frac{ { \cos }^{2}a +  {(1 +  \sin \:  }^{2} a) + 1 + 2 \sin \: a }{(1 +  \sin \: a) \cos \: a  }

 \frac{1 + 1 + 2 \sin \: a }{(1 +  \sin \: a) \cos \: a  }

 \frac{2(1 +  \sin \: a) }{(1 +  \sin \: a) \cos \: a }

 \frac{2}{ \cos \: a }

2 \sec \: a

{ \green{ \underline{ \underline{ \huge{ \mathcal{be \: brainly}}}}}}

Similar questions