Math, asked by kasturikhamari1979, 1 month ago

Prove that cosA/1-sinA = 1+ sinA/cosA​

Answers

Answered by MrImpeccable
7

ANSWER:

To Prove:

  • cosA/(1 - sinA) = (1 + sinA)/cosA

Solution:

We need to prove that,

\implies\dfrac{\cos A}{1-\sin A}=\dfrac{1+\sin A}{\cos A}

Taking LHS,

\implies\dfrac{\cos A}{1-\sin A}

Now, we will multiply and divide by (1 + sin A).

So

\implies\dfrac{\cos A}{1-\sin A}\times\dfrac{1+\sin A}{1+\sin A}

Combining the fractions,

\implies\dfrac{(\cos A)(1+\sin A)}{(1-\sin A)(1+\sin A)}

We know that,

\hookrightarrow (x+y)(x-y)=x^2-y^2

So,

\implies\dfrac{(\cos A)(1+\sin A)}{(1-\sin A)(1+\sin A)}

\implies\dfrac{(\cos A)(1+\sin A)}{(1)^2-(\sin A)^2}

\implies\dfrac{(\cos A)(1+\sin A)}{1-\sin^2A}

We know that,

\hookrightarrow 1-\sin^2\theta=\cos^2\theta

So,

\implies\dfrac{(\cos A)(1+\sin A)}{1-\sin^2A}

\implies\dfrac{(\cos A)(1+\sin A)}{\cos^2A}

Cancelling one cos A,

\implies\dfrac{(\cos A)(1+\sin A)}{\cos^2A}

\implies\dfrac{1+\sin A}{\cos A}=RHS

As, LHS = RHS,

HENCE PROVED!!!

Formulae Used:

  • \hookrightarrow (x+y)(x-y)=x^2-y^2
  • \hookrightarrow 1-\sin^2\theta=\cos^2\theta
Answered by 12thpáìn
3

 \sf Prove~~ That .\:  \:  \frac {cosA}{1-sinA }= \frac {1+ sinA}{cosA} \\

Let ,

 \sf  LHS =\dfrac {cosA}{1-sinA }

 \sf RHS = \dfrac {1+ sinA}{cosA}

  • On Solving LHS.

 \sf \implies \:  \:  \: \dfrac {cosA}{1-sinA }   \times  \dfrac {1 + sinA  }{1 + sinA }

\sf \implies \:  \:  \: \dfrac {cosA}{1-sinA }   \times  \dfrac {1 + sinA  }{1 + sinA }

\sf \implies \:  \:  \: \dfrac {cosA(1 + sinA )}{(1-sinA) (1 + sinA) }\\

  • (a+b)(a-b) = a²-b²

\sf \implies \:  \:  \: \dfrac {cosA(1 + sinA )}{ {1}^{2} -{sin }^{2} A }

\sf \implies \:  \:  \: \dfrac {cosA(1 + sinA )}{ 1 -{sin }^{2} A }

\sf \implies \:  \:  \: \dfrac {cosA(1 + sinA )}{{ (cos  A) }^{2}}

\sf \implies \:  \:  \: \dfrac {\cancel{cos A }(1 + sinA )}{cosA \times  \cancel{cos A }}

\sf \implies \:  \:  \: \dfrac {1 + sinA }{{cos A }}

 \bf{\quad\quad \quad\quad    LHS = RHS}

#Proved

Similar questions