Prove that cosA/(1-sinA)+cosA/(1+sinA) = 2secA
Answers
Answered by
73
LHS
[cosA/(1-sinA)] + [cosA/(1+sinA)
Taking LCM
[cosA(1+sinA) + cosA(1-sinA)]/[(1-sinA)(1+sinA)]
=(cosA+cotA + cosA - cotA)/(1-sin²A)
=2cosA/cos²A
=2/cosA
=2secA
RHS
[cosA/(1-sinA)] + [cosA/(1+sinA)
Taking LCM
[cosA(1+sinA) + cosA(1-sinA)]/[(1-sinA)(1+sinA)]
=(cosA+cotA + cosA - cotA)/(1-sin²A)
=2cosA/cos²A
=2/cosA
=2secA
RHS
Answered by
1
Concept
Trigonometry has three fundamental operations: sine, cosine, and tangent. The cotangent, secant, and cosecant are three crucial trigonometric functions that can be derived from these three fundamental ratios or functions.
Given
cosA/(1₋sinA) ₊ cosA/(1 ₊ sinA) = 2 secA
Find
we are asked to prove the expression cosA/(1₋sinA) ₊ cosA/(1 ₊ sinA) = 2 secA
Solution
given, cos A/(1₋sin A) ₊ cos A/(1 ₊ sin A) = 2 sec A
L.H.S = cos A/(1₋sin A) ₊ cos A/(1 ₊ sin A)
= cos A ₋ cos A sin A ₊ cos A ₊ cos A sin A / (1 ₋ sin A)(1 ₊ sin A)
= 2 cos A/ 1 ₋ sin²A [∵ (a ₊ b)(a ₋ b) = a² ₋ b²]
= 2 cos A / cos²A [ ∵ cos²A ₊ sin²A = 1 ⇒ cos²A = 1 ₋ sin²A]
= 2 / cos A [ 1/cos A = sec A]
= 2 sec A = R.H.S
Hence, proved.
#SPJ2
Similar questions