prove that cosA/1-sinA=tan(45+A/2)
Answers
Answered by
1
LHS
= cosA ÷ (1 -
sinA)
= [cosA ÷ (1 - sinA)] * [ (1 + sinA)÷(1 +
sinA) ]
= [cosA * (1 + sinA)] ÷ [(1 - sinA) * (1
+ sinA) ]
= [cosA * (1 + sinA)] ÷ (1-sin²A)
= [cosA * (1 + sinA)] ÷ cos² A
= (1 + sinA)÷ cosA
= [ cos²(A/2) + sin²(A/2)+ 2sin(A/2)cos(A/2) ] ÷ [cos²(A/2) - sin²(A/2)]
= [ cos(A/2) + sin(A/2) ]² ÷ [ {cos(A/2) - sin(A/2)} * {cos(A/2) + sin(A/2)} ]
= [ cos(A/2) + sin(A/2) ] ÷ [cos(A/2) - sin(A/2)]
= { [ cos(A/2) + sin(A/2) ] ÷ [cos(A/2) - sin(A/2)] } * { [1÷ cos(A/2)] ÷[1÷ cos(A/2)] }
= [ 1+ tan(A/2) ] ÷ [ 1-tan(A/2) ]
= [ tan 45° + tan(A/2) ] ÷ [ 1 - tan 45° tan(A/2)
]
= tan (45° + A/2) = RHS (hence proved
Similar questions