Math, asked by Margam, 1 year ago

Prove that (cosA÷1-tanA)+(sinA÷1-cotA)=cosA+sinA

Answers

Answered by Anonymous
4
cos A / (1 - tan A) + sin A /(1 - cot A) = sin A + cos A       

LHS = cos A / (1 - tan A) + sin A /(1 - cot A)
       = cos2 A / (cos A - sin A) + sin2 A / (sin A - cos A)
       = cos2 A / (cos A - sin A) - sin2 A / (cos A - sin A)
       = (cos2 A - sin2 A) / (cos A - sin A)
       = (cos A + sin A) (cos A - sin A) / (cos A - sin A)
       = (cos A + sin A).

Hence proved.
Answered by saifrahman
3
=cosA/(1-sinA/cosA) + sinA/(1-cosA/sinA)
=cosA.cosA/(cosA-sinA) + sinA.sinA/(sinA-cosA)
=cos sq. A/(cosA-sinA) - sin sq.
A/(cosA-sinA)
=(cos sq. A- sin sq. A)/(cosA-sinA)
=(cosA+sinA)(cosA-sinA)/(cosA-sinA)
=cosA+ sinA
Plz mark as the brainliest
Similar questions