Math, asked by kulalapeksha2503, 2 months ago

prove that, cosA/1+tanA+sinA/1-cotA=cosA+sinA ​

Answers

Answered by Anonymous
351

Need To Prove :-

  • \begin{gathered} \\  \sf \green{\dfrac{cosA}{1 - tanA} + \dfrac{sinA}{1 - cotA} = cosA + sinA}\end{gathered}

Formula's :-

  • \begin{gathered} \\  \sf \purple {\: tanx = \frac{sinx}{cosx} }\end{gathered}
  • \begin{gathered} \\ \sf\purple{\: cotx = \frac{1}{tanx} = \frac{cosx}{sinx}} \end{gathered}

  • \begin{gathered} \\ \sf\purple{ \: secx = \frac{1}{cosx} }\end{gathered}

Proof :-

\sf\pink{:\implies L.H.S=  \dfrac{cosA}{1 - tanA} + \dfrac{sinA}{1 - cotA}} \\ \\\\  { \sf:\implies  \dfrac{ \cos A}{1 - \dfrac{ \sin A}{ \cos A} \: + \: \dfrac{ \sin A}{1 - \dfrac{ \cos A}{ \sin A} } }} \\ \\ \\ \sf :\implies  \dfrac{ \cos A}{ \dfrac{ \cos A - \sin A}{ \cos A} } \: + \: \dfrac{ \sin A}{ \dfrac{ \sin A - \cos A}{ \sin A} } \\ \\\\ \sf: \implies  \dfrac{ \cos^{2}A}{ \cos A - \sin A} \: + \: \dfrac{ \sin^{2}A }{ \sin A - \cos A}  \\ \\\\  \sf: \implies  \dfrac{ \cos^{2} A}{ \cos A - \sin A} \: - \: \dfrac{ \sin^{2}A }{ \cos A - \sin A} \\\\\\  \sf :\implies \dfrac{ \cos^{2}A - \sin^{2}A }{ \cos A - \sin A} \\ \\\\ \sf: \implies  \dfrac{( \cos A - \sin A)( \cos A + \sin A)}{ \cos A - \sin A}  \\ \\\\ \sf \pink{:\implies \cos A + \sin A \: = \: RHS} \\\\

  • Hence,( Proved..!)
Answered by BrainlyRish
161

Appropriate Question :

⠀⠀⠀⠀⠀▪︎ Prove that :  \sf \leadsto \dfrac{cos A }{1 - tan A } + \dfrac{ sin A }{1 - cot A} = cos A + sin A  \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given :  \sf \leadsto \dfrac{cos A }{1 - tan A } + \dfrac{ sin A }{1 - cot A} = cos A + sin A  \\

Exigency To Prove :  \sf \leadsto \dfrac{cos A }{1 - tan A } + \dfrac{ sin A }{1 - cot A} = cos A + sin A  \\ [ L.H.S = R.H.S ]

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \dag\:\:\bigg\lgroup \sf{ \dfrac{cos A }{1 - tan A } + \dfrac{ sin A }{1 - cot A} = cos A + sin A }\bigg\rgroup \\\\

Here ,

\qquad  \leadsto  \bf L.H.S \: = \: \sf \dfrac{cos A }{1 - tan A } + \dfrac{ sin A }{1 - cot A} \\

\qquad  \leadsto  \bf R.H.S \: = \: \sf  cos A + sin A \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Solving \: the \: L.H.S\::}}\\

\qquad  :\implies  \bf L.H.S \: = \: \sf \dfrac{cos A }{1 - tan A } + \dfrac{ sin A }{1 - cot A} \\

\qquad  :\implies  \sf \dfrac{cos A }{1 - tan A } + \dfrac{ sin A }{1 - cot A} \\

\dag\:\:\sf{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ tan \theta = \dfrac{ sin \theta }{ cos \theta }  }\bigg\rgroup \\\\

\qquad  :\implies  \sf \dfrac{cos A }{1 -tan A } + \dfrac{ sin A }{1 - cot A} \\

\qquad  :\implies  \sf \dfrac{cos A }{1 - \dfrac{ sin A }{ cos A }} + \dfrac{ sin A }{1 - cot A} \\

\dag\:\:\sf{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ cot \theta = \dfrac{ cos \theta }{ sin \theta }  }\bigg\rgroup \\\\

\qquad  :\implies  \sf \dfrac{cos A }{1 - \dfrac{ sin A }{ cos A }} + \dfrac{ sin A }{1 - cot A} \\

\qquad  :\implies  \sf \dfrac{cos A }{1 - \dfrac{ sin A }{ cos A }} + \dfrac{ sin A }{1 - \dfrac{ cos A }{ sin A } } \\

\qquad  :\implies  \sf \dfrac{cos A }{ \dfrac{cos A -  sin A }{ cos A }} + \dfrac{ sin A }{ \dfrac{ sin A - cos A }{ sin A } } \\

\qquad  :\implies  \sf \dfrac{cos^2 A }{ cos A -  sin A } + \dfrac{ sin^2 A }{  sin A - cos A  } \\

\qquad  :\implies  \sf \dfrac{cos^2 A - sin^2 A }{ cos A -  sin A }  \\

\dag\:\:\sf{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ Algebraic \:Indentity\:\:= a^2 - b^2 = ( a + b ) ( a - b)  }\bigg\rgroup \\\\

\qquad  :\implies  \sf \dfrac{cos^2 A - sin^2 A }{ cos A -  sin A }  \\

\qquad  :\implies  \sf \dfrac{(cos A - sin A)(cos A + sin A ) }{ cos A -  sin A }  \\

\qquad  :\implies  \sf \dfrac{\cancel{(cos A - sin A)}(cos A + sin A ) }{ \cancel {(cos A -  sin A)} }  \\

\qquad  :\implies  \sf (cos A + sin A )   \\

\qquad \bf L.H.S \:=    \sf cos A + sin A    \\

Therefore,

\qquad  \leadsto  \bf L.H.S \: = \: \sf  cos A + sin A \\

\qquad  \leadsto  \bf R.H.S \: = \: \sf  cos A + sin A \\

⠀⠀⠀⠀⠀As , We can clearly see that L.H.S = R.H.S ;

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Proved \:}}}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions