prove that cosA/1-tanA +sinA/1-cotA =cosA+sinA
Answers
Answered by
1
Step-by-step explanation:
- cosA/1-sinA/cosA +sinA/1-cosA/sinA
- cosA/cosA-sinA/cosA+sinA/sinA-cosA/sinA
- cos^2A/cosA-sinA+sin^2A/sinA-cosA
- cos^2A/cosA-sinA - sinA/cosA-sinA
- cos^2A-sin^2A/cosA-sinA
- (cosA+sinA)(cosA-sinA)/(cosA-sinA)
- cosA+sinA
Attachments:
Answered by
0
Answer:
cosA+sinA
Step-by-step explanation:
L.H.S. = cos A/1 – tanA + sin A/1 – cot A
= cos A/1 – sin A/cos A + sin A/1 – cos A/sin A
= cos A/(cos A – sin A)/cosA + sin A/(sin A – cos A)/sin A
= cos2 A/cos A – sinA + sin2 A/sinA – cos A
= cos2 A – sin2A/(cos A – sin A)
= (cos A + sin A)(cos A – sin A)/(cos A – sin A)
= cos A + sin A
= R.H.S.
Hence proved
Similar questions