Prove that: cosA / 1 - tanA + sinA / 1-cotA = cosA + sinA
Answers
Answered by
0
the above one has sign mistake just instead of cos²A+sin²A, put cos²A-sin²A.
that's it.
Answered by
5
Answer:
Step-by-step explanation:
LHS
= cosA / (1-tanA) . + . sinA / (1-cotA)
= cos A / (1 - sin A/cos A) + sin A / (1 - cos A/sin A)
= cos²A / (cos A - sin A) + sin²A / (sin A - cos A)
= cos²A/ (cos A - sin A) - sin²A / (cos A - sin A)
= (cos ² A - sin ² A) / (cos A - sin A)
= (cos A - sin A)(cos A + sin A) / (cos A - sin A)
= cos A + sin A That is RHS
Similar questions