Math, asked by Joeljthomman, 11 months ago

prove that cosa/1-tana+sina/1-cota=sina+cosa

Answers

Answered by kanchisingh66
10

Answer:

LHS

cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)

cos²A/ (cos A - sin A) + sin²A / (sin A - cos A)

cos²A/ (cos A - sin A) - sin²A / (cos A - sin A)

(cos ² A - sin ² A) / (cos A - sin A)

(cos A - sin A)(cos A + sin A) / (cos A - sin A)

cos A + sin A

RHS

cos A + sin A

LHS = RHS

Answered by ShuchiRecites
4

Solution

L.H.S → cosA/(1 - tanA) + sinA/(1 - cotA)

→ cosA/(1 - sinA/cosA) + sinA/(1 - cosA/sinA)

→ cosA/(cosA - sinA)/cosA + sinA/(sinA - cosA)/sinA

→cos²A/(cosA - sinA) - sin²A/(cosA - sinA)

→ (cos²A - sin²A)/(cosA - sinA)

→ (cosA + sinA)(cosA - sinA)/(cosA - sinA)

→ cosA + sinA = R.H.S

Hence Proved

Similar questions