Math, asked by prasadmunigi, 2 months ago

prove that : .cosA/1-tanA +sinA/1-cotA=sinA+cosA​

Answers

Answered by sandy1816
3

Answer:

Your answer attacted in the photo

Attachments:
Answered by Aryan0123
6

To Prove:

\bf{\dfrac{cosA}{1-tanA}+\dfrac{sinA}{1-sinA}=sinA + cosA}\\\\\\

Solution:

tan A can be written as sin A by cos A

\sf{\dfrac{cosA}{1-\dfrac{sinA}{cosA}}+\dfrac{sinA}{1-\dfrac{cosA}{sinA}}}\\\\

= \: \sf{\dfrac{cosA}{\dfrac{cosA-sinA}{cosA}}+\dfrac{sinA}{\dfrac{sinA-cosA}{sinA}}}\\\\

= \: \sf{\dfrac{cos^{2} A}{cosA-sinA}+\dfrac{sin^{2}A}{sinA-cosA}}\\\\

= \: \sf{\dfrac{cos^{2}A}{cosA-sinA}-\dfrac{sin^{2}A}{cosA-sinA}}\\\\

= \: \sf{\dfrac{cos^{2}A-sin^{2}A}{cosA-sinA}}\\\\

= \: \sf{\dfrac{(cosA+sinA)(cosA-sinA)}{(cosA-sinA)}}\\\\

= \: \sf{sinA+cosA}\\\\

\green{\star} \: \pink{\underline{\sf{HENCE \: PROVED}}} \: \green{\star}

Similar questions