Math, asked by divyabm2004, 5 months ago

Prove that (cosa + cosß)²+ (sina + sinß)2 = 4cos2 (a-ß/2)​

Answers

Answered by SuitableBoy
114

Answer:

 \\

\large{\underline{\underline{\bf{To\:Prove:-}}}}

 \\

 \sf \:  {(cos \:  \alpha  + cos \:  \beta )}^{2}  +  {(sin \:  \alpha  - sin \:  \beta )}^{2}  = 4 {cos}^{2}  \bigg( \dfrac{ \alpha  -  \beta }{2}  \bigg)

 \\

\large{\underbrace{\underline{\bf{Required\:Proof:-}}}}

 \\

\underline{\dag{\textit{\textbf{\;Taking\:LHS}}}}

 \\

 \colon \rarr \bf \:  {( \cos \:  \alpha  + cos \:  \beta )}^{2}  +  {(sin \:  \alpha  - sin \:  \beta )}^{2}  \\  \\

  • Using (a+b)² = a² + b² + 2ab &
  • Using (a-b)² = a² + b² - 2ab

 \\   \colon \rarr \bf \:  {cos}^{2}  \:  \alpha  +  {cos}^{2}  \:  \beta  + 2cos \:  \alpha  \: cos \:  \beta  +  {sin}^{2}  \:  \alpha  +  {sin}^{2}  \:  \beta   - 2sin \:  \alpha  \: sin \:  \beta  \\  \\

  • Rearranging the terms.

 \\ \colon \bf \rarr \: ( {cos}^{2}  \:  \alpha  +  {sin}^{2}  \:   \alpha ) + ( {cos}^{2}  \:  \beta  +  {sin}^{2}  \:  \beta ) + 2cos \:  \alpha  \: cos \:  \beta  - 2sin \:  \alpha  \: sin \:  \beta  \\  \\

We know,

  • cos²A + sin²A = 1 , put it in the above equation.

 \\  \colon \rarr \bf \: 1 + 1 + 2cos \:  \alpha  \: cos \:  \beta  - 2sin \:  \alpha  \: sin \:  \beta  \\  \\

We know,

  • 2cos A cos B = cos (A+B) + cos (A-B)

And,

  • 2 sin A sin B = cos (A-B) - cos (A+B)

So,

 \\  \colon \rarr \bf \: 2 + cos( \alpha  +  \beta ) + cos( \alpha  -  \beta ) -   \big[ cos( \alpha  -  \beta )  - cos( \alpha  +  \beta ) \big ] \\  \\   \colon \rarr \bf \: 2 + cos( \alpha  +  \beta ) +  \cancel{cos( \alpha  -  \beta )} -  \cancel{(cos( \alpha  -  \beta )} + cos( \alpha  +  \beta ) \\  \\  \colon \rarr \bf \: 2 + 2cos( \alpha  +  \beta ) \\  \\

We know,

  • 1 + cos A = 2 cos²\sf\bigg(\dfrac{A}{2}\bigg)

So,

  • cos A = 2 cos² \bf\bigg(\dfrac{A}{2}\bigg) - 1

In the given equation,

  • A = ( \alpha+\beta )

So,

 \\  \colon \rarr \bf \: 2 + 2  \bigg\{2 {cos}^{2}  \frac{( \alpha  +  \beta )}{2}  - 1 \bigg \} \\  \\ \colon \bf \rarr \: \cancel 2 + 4 {cos}^{2}  \frac{( \alpha  +  \beta )}{2}  -  \cancel2 \\  \\  \red \colon   \red\dashrightarrow \:  \underline{ \boxed{ \pink{ \frak{ \sf{4 } \frak{cos}^{2} \frac{( \alpha  +  \beta )}{ \sf2}  }}}} \\  \\   \green\therefore  \quad\blue{ \bf L.H.S.= R.H.S.\: } \\  \\  \green \therefore \bf \quad \purple{Proved}

 \\

_____________________________

Similar questions