Math, asked by mahathi3337, 7 months ago

prove that cosA.cos(π/3+A).cos(π/3-A)=1/4 cos3A​

Answers

Answered by dami897
5

Answer:

os(π/3 - A) = cos(π/3)cosA + sin(π/3)sinA = (1/2)cosA + (√3/2)sinA

Similarly, cos(π/3 + A) = (1/2)cosA - (√3/2)sinA

So, cosAcos(π/3-A)cos(π/3+A) = cosA[(1/4)cos2A - (3/4)sin2A]

                                            = cosA[(1/4)cos2A - (3/4)(1-cos2A)]

                                            = cosA[cos2A - 3/4]

                                            = (1/4)(4cos3A - 3cosA) = (1/4)cos(3A)

---------------------------------------------------------------------------------------

NOTE:  cos(3A) = cos(2A+A) = cos(2A)cosA - sin(2A)sinA

                                          = (2cos2A-1)cosA - 2sinAcosAsinA

                                          = 2cos3A-cosA - 2sin2AcosA

                                          = 2cos3A - cosA - 2(1-cos2A)cosA

                                          = 4cos3A - 3cosA

please mark as brainliest if u liked the answer

Similar questions