prove that cosa×cos4a×cos×8a=sin16a/16
Answers
Answered by
2
Given cosA x cos2A x cos4A x cos8A = sin16A/16sinA
RHS
sin16A/16sinA
[2sin8A cos 8A]/16sinA
[cos8A(2sin4A cos4A)]/8sinA
[cos8A cos 4A(2 sin 2A cos 2A)]/4sinA
[cos 8A cos 4A cos 2A(sin2A)]/2 sinA
[cos8A cos 4A cos 2A(2sinA cos A)]/2
sin A cos A cos 2A cos 4A cos 8A
Hence RHS=LHS
Read more on Brainly - https://brainly.com/sf/question/2143006
RHS
sin16A/16sinA
[2sin8A cos 8A]/16sinA
[cos8A(2sin4A cos4A)]/8sinA
[cos8A cos 4A(2 sin 2A cos 2A)]/4sinA
[cos 8A cos 4A cos 2A(sin2A)]/2 sinA
[cos8A cos 4A cos 2A(2sinA cos A)]/2
sin A cos A cos 2A cos 4A cos 8A
Hence RHS=LHS
Read more on Brainly - https://brainly.com/sf/question/2143006
harjot14:
thnxxx
Similar questions